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metric p u p  is given with an explicit example of S, .  A method for mnstruning the 
q-analogue of lhe vertex operators is developed. A 1 1  mrrespondence between the 
space V of misted q-vertex operalors and the ring of qdeformed sy"et l ic  funclions 
A @z Q(q,  t )  is established and a mapping from V - A @z Q(q ,  t) is defined. A 
number of relevant theorems are given. 

i. introduction 

The development of methods for constructing and studying integrable quantum mod- 
els has recently led to new algebraic structures known as quantum groups [l] or, 
more precisely, quantum affine Lie algebras. Finding vertex operator representations 
of quantum affine algebras is a natural issue in the study of quantum groups. Besides, 
recent progress in conformal field theories has shown the important role played by 
vertex operator algebras in quantum field theories [4]. 

These developments have stimulated much activity in both mathematicians and 
physicists. In a recent paper 121 Frenkel and Jing have constructed the untwisted 
vertex representations of quantum affine algebras and more recently Jing (71 has de- 
veloped the twisted q-vertex operators. Drinfeld's theorem of quantum affine algebras 
[l] plays the crucial role in such constructions. 

First of all we will reconstruct the ring A: of qdeformed symmetric functions 
by using a different type of q-deformation then we will show that there exists an 
isomorphism between the ring A i  and the space Vq of qdeformed vertex operators. 
These qdeformed vertex operators are nothing but the q-analogue of the untwisted 
vertex operators used in the description of affine Kac-Moody algebras (41. This leads 
to a very simple way of constructing the twisted q-vertex operators. 

In this paper we will closely follow the notation of (9, 10, 131 and will use the 
results therein. 

2. The ring A; 

In (131, we gave the q-deformation of the Hall-Littlewood symmetric function 
PA(s,l) using the following definition of q-number 

[n], = 1 + q +  q z +  ' . ' +  q"-'. (1) 

$ Present address: Instytut Fizyki, Uniwenytel Mikolaja Kopemib, d. Gmdziadzka 5 0 ,  87-100 '&mi, 
Poland. 
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It is possible to consistently define various types of qdefomations of symmetric 
functions such as in terms of the q-numbers 
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as used in the description of quantum groups [l]. We will use (2) for the definition 
of a q-number unless specified otherwise. The q-analogue of the Hall-Littlewood 
symmetric functions will form the basis of the ring A i  of the qdeformed symmetric 
functions. A q-analogue of complete symmetric functions can be defined as 

where 

2; = I-J[i]y+nJq!. (4) 

In [lo] it has been shown that PA(s,t) is the generalized form of the Hall- 
Littlewood symmetric function. Let us define a scalar product ( , ):$) Over Q q ( s , l )  
as follows 

(5) ( q )  - 6 .'( ( P A ? P * ) ( 8 , t )  - Ap A s , t )  

where 

and Q q ( s , t )  is the q-analogue of the field of rational functions in independent inde- 
terminates s and 1. We call Pi(s,t), the qdeformation of the symmetric function 
PA(s,2) and define 

where 

and the subscript q in { ] indicates that the powers of 1 and s are q-numbers. 
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Proof. We compute exp(logPp); 
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logPq = - j -c{log(l-  z ; y j s y  -log(] - tqyjs‘)-’], 
i,j r=a 

Hence 

in which the coefficient of p A ( z ) p A ( y )  is seen to be z;(s,t)-’. Here we have made 
use of the ¶exponential function defined a.$ 

Hence for s = 0 we get 

pq = x b : ( t ) P ; 1 ( + ; t ) P i ( y i t )  
A 

where P;( 2; t )  and P j ( y ;  2) are the qdeformed Hall-Littlewood symmetric func- 
tiom and will be denoted by P i ( t ) ,  and bI (2 )  k defined in (11). 

Expression (7) is a very general definition of symmetric functions and all the 
symmetric functions (Hall-Littlewood, Schur’s Q, Jack, zonal and Schur) are special 
cases of qdeformed symmetric functions. For q = 1 and s = 0, e(t) reduces to 
Hall-Littlewood symmetric functions and for s = 1”. q = 1 we get Jack symmetric 
functions, where n is an arbitrary parameter. For q = 1 and s = 1, Px(s,t) reduces 
to S functions. We can also have qdefomatians of symmetric functions by setting 
q f 0, fl any arbitrary complex number. For example, P:(O,f) or simply q ( t )  
is the qdefonnation of the Hall-Littlewaod symmetric function which is our major 
conem here. 

Thus the scalar product (,){$ over e,(*) is given by 
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21. hal i l y  and orthogonality 

Let us introduce another symmetric function Q:(t) related to Pi (? )  by a scalar 
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b i ( t )  a3 follows 

QX(t) = bz(W' l ( t )  (10) 

where 

and mi is the number of Occurrences of i in A. Then 

(Pl(1),Q:(t)) = 6 ~ ,  

ie. P,9(1), @ ( t )  are dual bases of A$ for the scalar product ( ~ ). It is easy to see 
that 

,I. . .  .,I. 

where q i ( 1 )  are the projection of Q:(t) defined as 

and 

Y;(.; t )  = n¶:,(z; 1) 
i 

where y is an arbitrary parameter. 

22 Recurrence relations of Q functions 

The q-analogue of the recurrence relations obeyed by the Schur Q functions Q A (  -1) 
as given in [ll] can be defined as 

Qi2x7. . .x ,  = Q'~,A*Q'LA , . .  A, -Q'~>A,QLA+.. .A, 
+. . .+  Q:l~,Q:2~3...~,-, ( 1  even) 

and 

Q ~ , A  > . . .A ,  - ¶ A , Q A 2 A 3 . . . A ,  - q;2Q'i,A,...,i, 

and 

Q ~ , A ,  = q:,Pi, - ~ Y : , + ~ ¶ A , - I  9 

+ ' .  ' + qI,Q:,A ,... At-, ( 1  odd) - 9  v 

f . . . + ( ( - l ) ["]S  + (-l)[A2-1lq) 

The last relation is directly derived from equation (13). Also for q: = 1 and 
we have 

= 0 

Q!AA - - ( ( 4 ) [ A r L  + (-1)IA7-119 ) and Q L A r  - - 0. 
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3. qanalogue of the symmetric gmup S,, 

?he qdeformation of the symmetric functions leads to the q-analogue of the charac- 
ters of S,,. 

The connection between the ordinary characters of S,  and S functiom o n  he 
given as 

where xi is the character of the irrep {A)  for the class { p )  and p,, are p w e r  sum 
symmetric functions. 

The spin characters are related to Schur's Q functions as follows 

where &A'A1 is the spin character for the class U of odd cycles only and [ z ]  means 
the integer part of 2'. 

We observe that for s = 1 ,  Pj(s,1) reduces to the qdeformed Schur function 
s', and for s = 0 & 1 = -1, Pj(s, 1 )  reduces to the qdeformed Schur's Q function. 
Hence we an make a q-ana!ogue of the cquatinns (13) an!! (14) s fc!!o% 

and 

3.1. qdeformed spin characfers 

In an earlier paper [13] we had presented the qdeformed ordinary characters of 
the symmetric group. The spin characters of S ,  are normally calculated by using 

will use equation (16) and the q-analogue of the recurrence relations for the explicit 
calculations of the qdeformed spin characters. 

Algorithm 1. 

the recurrence re!atlons of the Q funcfiom a!ong with (14) p j ;  !a this SeStiG!! F e  

(i) Using (12), expand Q: in terms of q:. vi) Write each q; as 

where p is a partition of T. 

(iii) Equate this to expression (16) for Q',. 
liv) /A;X(q)  be ~ ! ~ f i ! ~ ~ e ~  by comparing thy c~effidens of p u  9~ b t h  \..I \v 

of the equation (16). 
Using this algorithm and (1) we give the qdeformed spin characters of S, in table 1. 

It is important to note that the basic spin characters are independent of q. 
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Tnbk 1. qdependent spin charanem of .% 

1' 212 22 31 4 

IA:Olr 2 0 0 1 &  
jAl0jl 2 0 0 - 1  -79 
[A;]] 2 ( q + q ' + q 3 - 1 )  0 0 - 1  0 

1 - ̂ ..^I^.-..^ ..,..*.a*- ..̂ .̂.̂&.-̂ ... y-Umur,ugus U, .=&=A u p S . P L " L "  

Jing [SI has shown a relationship between vertex operators with a parameter 1 and 
the symmetric group S, and its double covering group rn. The parameter 1 plays 
a similar role in the description of vertex operators to one it plays in the theory of 
symmetric functions explained in the previous section, i.e. the vertex operators with 
1 = 0 correspond to S functions and those with t = -1 correspond to Schur's Q 
functions. Here we shall give a q-analogue of vertex operators and will show a 1:l 
correspondence between the space of qdeformed vertex operators V, and the ring of 
qdeformed symmetric functions Q,( t ) .  The proofs given in this section will follow 
those in (61. 

Vertex operators are defined with the help of infinite-dimensional Heisenberg 
algebras. 

We shall define a q-analogue of a Heisenberg aigebra X as 

Definition 1. The q-Heisenberg algebra 71, is generated by a and (,, n E 2 / 0 ,  and 
satisfies the following relations 

where 1 is a parameter. 
As usual S(71H;) is the symmetric algebra generated by C-,,, n E N. C-, is 

regarded as a multiplication operator and C,, as an annihilation operator on ~ ( X H , ) .  
As an example, 

where a is considered as an identity operator. 

space S ( 7 f ~ ; )  as follows 
Now we can define the q-analogue of a simplified form of vertex operators on the 
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We define a Hermitian structure (,) in the space S(7f;) 

or, in general, 

(C-x,C-,) = z;(~)&A, 

where X = (X,,X,, . . . ,A , )  and p = ( p l , p z , .  . . , p k )  are partitions. 
A polynomial function in C-, can he defined as follows 

The normal ordering product is used when the annihilation operator has to be 
moved to the right of the product [3] ,  as shown here. 

and 

V(x)V(y) =: V(x)V(y) : - { : - t " y )q  
where the subscript q indicates that the factor {(x - y/x - ty)) is a formal series 
in y / x  with the powers of t being q-numbers. 

Using the q-analogue of Young raising operators we give a q-analogue of Jing's 
proposition (2.17) [6] as follows. 

Theorem 1. For a partition X = (A,X,. . . A,) the element V-A . 1 can he expressed 
as 

q 

where 6 i j  is Young's raising operator whose action is defined as 

6i j I ... A , ,  , , A;, . .) = ';A, ... A ; + I  . , .A; - 1 .. .) 

and the subscript q in { } q  means the powers of t are q-numbers. 
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Rm$ The action of the components of the vertex operators V(x) as defined in 
(18) can be shown to be 
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where the subscript c is for the contour integral. 
Then it is easy to see the trivial result 

v-, , l  = Ri(1 ) .  

For the rest, let us use the contour integral approach. For any partition X = A, . . . A l ,  

where the term {xi - xj/xi - t ~ ~ ) ~ ,  comes from the normal ordering of the creation 
and annihilation operators. Using the definition of R;(t), we can write the following. 

V-,.l=--?--/ R:(l);[ l f{  x i - z J }  x-~+"--. dx 
xi - tx j  X 

nEN' 9 
(2rri)' 

Expanding the formal series {xi - xj/xi - txj}9 for i = 1 we get 

where = A,,&, . . . XI, i: = x 2 . ,  .z,, d x / z  = dx,/z,. . .dxl/z, and Ri(1) = 
R i l ( t ) R i 2 ( ! ) .  . . RpX,(t). The orthogonality of the q-analogue of vertex operators 
can be described by the following theorem. 
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Theorem 2. Fbr two partitions X = ( A l ,  X2, .  . . , A k )  and p = ( p , , p 2 , .  . . , p , )  

(V-A.13V-M.1)q = b:( t )6Af i  (22) 

where 

and mi is the number of occurrences of i in A. 

In order to prove this we will give q-analogues of some of Jig's results [6]. 

Lemma 1. f i r  m, n E N, we have 

v-',v-, ' 1 = 6 m , n ( l  - 1111.). 

The proof of this lemma is straightfonvard using the properties of the components of 
vertex operators. 

Proposition 1. Let X = ( l m 1 , 2 " ' z , .  . .) and x = ( l m r - ' , 2 " ' ~ , . .  .) then we have 

V_'-V=h ' 1  = 6+5 (1 - timLIq\ V i .1  
\ I -a 

The previous lemma and the inductive assumptions prove this proposition. 

Now the orthogonality of the qdeformed vertex operators a n  be proved as 

For two partitions X and p ,  such that 1x1 = 1p1 we have 
follows. 

(v -A . l , v -&. l )q  = v-i.l,v:Alv-,,.l)q 
= (V-j.1,6~,,,,~ (1 -tIm1(fi)lq) v-fi.l)q 
- - SA,,)r, (1 - l i m l ( @ l l * )  ( v - ~ . l , V - ~ . l ) ~ .  .. , 

By repeating this we get 

(V-A.l,V-p.l)q = b X ( t ) 6 ~ , ,  

which iS the desired result. 0 

= ~ l ( t ) 6 ~ ~ ,  and (8), we can define a Comparing the inner product 
mapping from Vq to A mZ Q,( t )  as Collows. 
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aefutition 2. The mapping p : Vq -+ A@., Q , ( t )  for a partition X = ( lm~2"'~. . .P")  
is given by 
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P ( L A )  = P (c!!x-" ... CY) = PY'PY' ... P;"' = P A .  

This immediately gives 

Comparing (24) and the identity 

(QI(t),Q:(t)) = b I ( t ) & ~ , ,  

we conclude that for a general value of t the map p : V, - A @., Q , ( t )  takes the 
form 

P( V- A ,  V- x z .  V- x, ( -1 1.1 = 9: (-1 ) 

P(v_x,v-x,.. .v_x,(o).l) = s: (27) 

(26) 

and 

where QX(-l) are the qdeformed Schur Q functions and s: are the qdeformed S 
functions. 

5. Construction of untwisted q-vertex operators 

In previous sections we have worked out the q-analogue of the vertex operators. 
On the basis of (18) and (19) we define the untwisted q-vertex operators in normal 
ordered form as follows. 

=: U( . )  : 

and 

=: U*( . )  : 
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where z is a non-zero complex number and the action of C(,,) is defined as 

= (v,C)e" a,< E Wt;). 

The factors e(z-((W+') and e(z((o)+' arise from the commutation of annihilation 
operators as they are tramferred to the right in  accordance with normal ordering. 
For 1 + 0 and q -+ 1 these expressions take a similar form to the vertex operators 
used in dual resonance theoly [4]. 

There ir, another way of developing the untwisted q-vertex operators. Consider 
a finitely generated free Abelian group L and define a non-singular symmetric 2- 
bilinear form (,) on L such that 

(C,C) E 2 2  for C E L. 

Define the function 

C : L x L + 3  

where w is the kth primitive root of unity and m E Z /kZ .  Then the commutator 
map C h bilinear into the Abelian group F such that 

and 

C(C,C) = 1 (31) 

f o r c , q , e E  L. 
Let wo = (-1)". In view of equations (30) and (31) there is a unique central 

extension 

1 - ( W O )  3 t=+L - 1 (32) 

of L by the cyclic group generated by wo with commutator map C such that 

= C(,,$j for  n , b ~  i. 

We fix a E 1, such that ii = C. This construction gives us the following form of the 
q-vertex operators. 
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where the a E L. For a special case of 
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(4 3 (*I) 

we get 

aba-lb-’ = ( - l ) ( a v ’ )  for a , b  E L 
and the untwisted q-vertex operators take the following form. 

= x x : z n .  
n E Z  

For 1 = 0 this expression is similar to the one given hy Frenkel and Jing [Z] in 
the description of quantum affine algebras, except that they have used a different 
definition of q-number. Equation (34) is the most general expression for the vertex 
operators of unrwisred @e. With the various specializations of q and 1 one can derive 
aii the vertex operators discussed eariier. 

6. Construction of hvisted qaertex operators 

nKisted vertex operators are now obtained by the action of an automorphism of a 
certain group M defined below. Closely following the terminology and notation used 
in [SI and using the results of the previous section, we define the following. 

(i) M is a finitely generated free Abelian group. 
(ii) (,) is a non-singular symmetric 2-bilinear form on M such that 

(C, <) E 2 2  for C E M. 

(iii) U is an automorphism of M such that 

( 4 , u v )  = (C,o) for C,v E M .  

(iv) m is a positive integer such that (T’” = 1. 
(VI 

Considering the action of the automorphism (T we redefine the commutator map 
C as follows. 

C :  M x  M - 3  

(C, o) ( - 1 ) ( L Z , . > a  “~(. ’ I )u(~,E*,n.z pu’< .n )  n ( - u P ) ( - Y J ) ,  
P E  zlm z 
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C(aC,v)=C(C,q)  f o r C , q E M  (35) 

C(C> II) = c(173C1-1 for C,q E M. (36) 

1 -t ( W O )  - M G M  - 1 
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Along With equations (30) and (31) we include the following 

and 

Then the central extension of M by the cjclic group generated by wo with the 
commutator map C is 

such that 

The automorphism U can be aiended to an automorphism b of the extension A? of 
M such that 

and 

(37) 

aba-lb-' = C(ii,6) for a , b ~  M. 

(ea)- = aii 

ea = E P E Z / " . Z  U * ' i ( + W ' i > ' i ) / 2  

v a E M 

Now the twisted q-vertex operators can he defined as 

where 
.qZ) = &-(C, *)&+(C, t ) a r -  C p E Z / . n Z u " i ( 0 ) - - ( ~ ' d . d ) I Z  

Again for the special case of 

we get 

and the twisted q-vertex operators take the form 

(WO)  (Al) 

aba-'b-' - - (-l)@3b) 

,p(*) = &?(C, .)&:(C, Z)a*lZ*CIEa/.nz a P ' i ( O ) - ( a ~ d ~ ) / Z  

for a , b ~  M 

where 

and 

For the specialization 1 = 0 equation (39) gives a similar result to the one reported 
in [7] except that the definition of q-number is different. Also for q = 1 and 2 = 0 
this result is similar to the case studied by Lepowsky [SI. We find that the expression 
(39) is a very general form of vertex operators. br ious specializations of t, q and U 

give the desired results. For example, in the case of identity automorphism U = 1 
we get the uniwisied q-vertex operators and equation (39) reduces to (34). 
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7. Conclusion 

A q-analogue of the Heisenberg algebra is defined. This leads to the construction of 
q-vertex operators with a parameter t similar to the theory of symmetric functions. An 
isomorphism from the space of q-vertex operators to the ring A t  of the qdeformed 
vertex operators is defined explicitly. This isomorphism is valid for a general value of 
t and as well as the specialized values such that t = 0 and t = -1 in which case we 
get S functions and Schur Q functions. Using these results a very simple technique 
for the construction of misted and untwisted q-vertex operators is developed. This 
approach is more simple and straightforward than any other technique. The final 
result is a very general form of the vertex operators and by the specializations of 
various parameters, the results can be verified. 
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