Vertex operators and symmetric functions

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1992 J. Phys. A: Math. Gen. 252297
(http://iopscience.iop.org/0305-4470/25/8/038)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.62
The article was downloaded on 01/06/2010 at 18:24

Please note that terms and conditions apply.

Vertex operators and symmetric functions

M A Salam \dagger and B G Wybourne $\ddagger \S$
\dagger Department of Physics, University of Canterbury, Chnistchurch, New Zealand
\ddagger Department of Physics, University of Pacific, Stockton, California 95211-0197, USA

Received 7 October 1991, in final form 23 December 1991

Abstract

An algorithm for the calculation of q dependent spin characters of the symmetric group is given with an explicit example of S_{4}. A method for constructing the q-analogue of the vertex operators is developed. A 1:1 correspondence between the space ν of twisted q-vertex operators and the ring of q-deformed symmetric functions $\Lambda \otimes_{\mathcal{Z}} \mathcal{Q}(q, t)$ is established and a mapping from $\mathcal{V} \rightarrow \Lambda \otimes \mathcal{Z} \mathcal{Q}(q, t)$ is defined. A number of relevant theorems are given.

1. Introduction

The development of methods for constructing and studying integrable quantum models has recently led to new algebraic structures known as quantum groups [1] or, more precisely, quantum affine Lie algebras. Finding vertex operator representations of quantum affine algebras is a natural issue in the study of quantum groups. Besides, recent progress in conformal field theories has shown the important role played by vertex operator algebras in quantum field theories [4].

These developments have stimulated much activity in both mathematicians and physicists. In a recent paper [2] Frenkel and Jing have constructed the untwisted vertex representations of quantum affine algebras and more recently Jing [7] has developed the twisted q-vertex operators. Drinfeld's theorem of quantum affine algebras [1] plays the crucial role in such constructions.

First of all we will reconstruct the ring $\Lambda_{\mathcal{Q}}^{q}$ of q-deformed symmetric functions by using a different type of q-deformation then we will show that there exists an isomorphism between the ring $\Lambda_{\mathcal{Q}}^{q}$ and the space \mathcal{V}_{q} of q-deformed vertex operators. These q-deformed vertex operators are nothing but the q-analogue of the untwisted vertex operators used in the description of affine Kac-Moody algebras [4]. This leads to a very simple way of constructing the twisted q-vertex operators.

In this paper we will closely follow the notation of $[9,10,13]$ and will use the results therein.

2. The ring $\boldsymbol{\Lambda}_{\mathcal{Q}}^{q}$

In [13], we gave the q-deformation of the Hall-Littlewood symmetric function $P_{\lambda}(s, t)$ using the following definition of q-number

$$
\begin{equation*}
[n]_{q}=1+q+q^{2}+\cdots+q^{n-1} \tag{1}
\end{equation*}
$$

§ Present address: Instytut Fizyki, Uniwersytet Mikołaja Kopernika, ul. Grudziądzka 5/7, 87-100 Toruń, Poland.

It is possible to consistently define various types of q-deformations of symmetric functions such as in terms of the q-numbers

$$
\begin{equation*}
[n]_{q}=\frac{q^{n}-q^{-n}}{q-q^{-1}} \tag{2}
\end{equation*}
$$

as used in the description of quantum groups [1]. We will use (2) for the definition of a q-number unless specified otherwise. The q-analogue of the Hall-Littlewood symmetric functions will form the basis of the ring $\Lambda_{\mathcal{Q}}^{q}$ of the q-deformed symmetric functions. A q-analogue of complete symmetric functions can be defined as

$$
\begin{equation*}
h_{\lambda}^{q}=\sum_{|\lambda|=n}\left(z_{\lambda}^{q}\right)^{-1} p_{\lambda}^{q} \tag{3}
\end{equation*}
$$

where

$$
\begin{equation*}
z_{\lambda}^{q}=\prod[i]_{q}^{m_{i}}\left[m_{i}\right]_{q}! \tag{4}
\end{equation*}
$$

In [10] it has been shown that $P_{\lambda}(s, t)$ is the generalized form of the HallLittlewood symmetric function. Let us define a scalar product $\langle,\rangle_{(s, t)}^{(q)}$ over $\mathcal{Q}_{q}(s, t)$ as follows

$$
\begin{equation*}
\left\langle p_{\lambda}, p_{\mu}\right\rangle_{(s, t)}^{(q)}=\delta_{\lambda \mu} z_{\lambda}^{q}(s, t) \tag{5}
\end{equation*}
$$

where

$$
\begin{equation*}
z_{\lambda}^{q}(s, t)=\prod_{i}[i]_{q}^{m_{i}}\left[m_{i}\right]_{q}!\prod_{j}^{l(\lambda)} \frac{\left(1-s^{\left[\lambda_{j}\right]_{q}}\right)}{\left(1-t^{\left[\lambda_{j}\right]_{q}}\right)} \tag{6}
\end{equation*}
$$

and $\mathcal{Q}_{q}(s, t)$ is the q-analogue of the field of rational functions in independent indeterminates s and t. We call $P_{\lambda}^{q}(s, t)$, the q-deformation of the symmetric function $P_{\lambda}(s, t)$ and define

$$
\mathcal{P}_{q}=\prod_{i, j}\left\{\frac{\left(t x_{i} y_{j} ; s\right)_{\infty}}{\left(x_{i} y_{j} ; s\right)_{\infty}}\right\}_{q}
$$

where

$$
(a ; s)_{\infty}=\prod_{r=0}^{\infty}\left(1-a s^{r}\right)
$$

and the subscript q in $\}$ indicates that the powers of t and s are q-numbers.

$$
\begin{equation*}
\mathcal{P}_{q}(x, y ; s, t)=\sum_{\lambda} z_{\lambda}^{q}(s, t)^{-1} p_{\lambda}(x) p_{\lambda}(y) \tag{7}
\end{equation*}
$$

Proof. We compute $\exp \left(\log \mathcal{P}_{q}\right)$;

$$
\begin{aligned}
\log \mathcal{P}_{q} & =\sum_{i, j} \sum_{r=0}^{\infty}\left\{\log \left(1-x_{i} y_{j} s^{r}\right)^{-1}-\log \left(1-t x_{i} y_{j} s^{r}\right)^{-1}\right\}_{q} \\
& =\sum_{i, j} \sum_{r=0}^{\infty} \sum_{n \geqslant 1} \frac{1}{[n]_{q}}\left(x_{i} y_{j} s^{r}\right)^{[n]_{q}}\left(1-t^{[n]_{q}}\right) \\
& =\sum_{n \geqslant 1} \frac{1}{[n]_{q}} \frac{\left(1-t^{[n]_{q}}\right)}{\left(1-s^{[n]}\right)} p_{n}(x) p_{n}(y) .
\end{aligned}
$$

Hence

$$
\begin{aligned}
\mathcal{P}_{q} & =\prod_{n \geqslant 1} \exp \left(\frac{1}{[n]_{q}} \frac{\left(1-t^{[n]_{q}}\right)}{\left(1-s^{[n]_{q}}\right)} p_{n}(x) p_{n}(y)\right) \\
& =\prod_{n \geqslant 1} \sum_{m_{n}=1}^{\infty} \frac{1}{\left[m_{n}\right]_{q}!}\left(\frac{1}{[n]_{q}} \frac{\left(1-t^{[n]_{q}}\right)}{\left(1-s^{[n]_{q}}\right)} p_{n}(x) p_{n}(y)\right)^{m_{n}}
\end{aligned}
$$

in which the coefficient of $p_{\lambda}(x) p_{\lambda}(y)$ is seen to be $z_{\lambda}^{q}(s, t)^{-1}$. Here we have made use of the q-exponential function defined as

$$
e_{q}^{x}=\sum_{n \geqslant 1}^{\infty} \frac{x^{n}}{\{n\}_{q}!} .
$$

Hence for $s=0$ we get

$$
\mathcal{P}_{q}=\sum_{\lambda} b_{\lambda}^{q}(t) P_{\lambda}^{q}(x ; t) P_{\lambda}^{q}(y ; t)
$$

where $P_{\lambda}^{q}(x ; t)$ and $P_{\lambda}^{q}(y ; t)$ are the q-deformed Hall-Littlewood symmetric functions and will be denoted by $P_{\lambda}^{q}(t)$, and $b_{\lambda}^{q}(t)$ is defined in (11).

Expression (7) is a very general definition of symmetric functions and all the symmetric functions (Hall-Littlewood, Schur's Q, Jack, zonal and Schur) are special cases of q-deformed symmetric functions. For $q=1$ and $s=0, P_{\lambda}^{q}(t)$ reduces to Hall-Littlewood symmetric functions and for $s=t^{\alpha}, q=1$ we get Jack symmetric functions, where α is an arbitrary parameter. For $q=1$ and $s=t, P_{\lambda}^{q}(s, t)$ reduces to S functions. We can also have q deformations of symmetric functions by setting $q \neq 0, \pm 1$ any arbitrary complex number. For example, $P_{\lambda}^{q}(0, t)$ or simply $P_{\lambda}^{q}(t)$ is the q-deformation of the Hall-Littlewood symmetric function which is our major concern here.

Thus the scalar product $\langle,\rangle_{(t)}^{(q)}$ over $Q_{q}(t)$ is given by

$$
\begin{equation*}
\left\langle p_{\lambda}, p_{\mu}\right)_{(t)}^{(q)}=\delta_{\lambda \mu} z_{\lambda}^{q}(t) \tag{8}
\end{equation*}
$$

where

$$
\begin{equation*}
z_{\lambda}^{q}(t)=\prod_{i}[i]_{q}^{m_{i}}\left[m_{i}\right]_{q}!\prod_{j}^{\prime(\lambda)}\left(1-t^{[\lambda j]_{q}}\right)^{-1} \tag{9}
\end{equation*}
$$

2.1. Duality and orthogonality

Let us introduce another symmetric function $Q_{\lambda}^{q}(t)$ related to $P_{\lambda}^{q}(t)$ by a scalar $b_{\lambda}^{q}(t)$ as follows

$$
\begin{equation*}
Q_{\lambda}^{q}(t)=b_{\lambda}^{q}(t) P_{\lambda}^{q}(t) \tag{10}
\end{equation*}
$$

where

$$
\begin{equation*}
\tilde{b}_{\lambda}^{q}(t)=\prod_{i \geqslant 1} \phi_{m_{i}(\lambda)}^{\tilde{q}}(t) \quad \phi_{n}^{\tilde{q}}(t)=\prod_{j \geqslant 1}^{n}\left(1-t^{\left[j j_{q}\right.}\right) \tag{11}
\end{equation*}
$$

and m_{i} is the number of occurrences of i in λ. Then

$$
\left\langle P_{\lambda}^{q}(t), Q_{\mu}^{q}(t)\right\rangle=\delta_{\lambda \mu}
$$

ie. $P_{\lambda}^{q}(t), Q_{\lambda}^{q}(t)$ are dual bases of $\Lambda_{\mathcal{Q}}^{q}$ for the scalar product \langle,$\rangle . It is easy to see$ that

$$
\begin{align*}
Q_{\lambda}^{q}(t) & =\prod_{i<j}\left\{\frac{1-\delta_{i j}}{1-t \delta_{i j}}\right\}_{q} q_{\lambda}^{q}(t) \tag{12}\\
& =\prod_{i<j}\left(1+\left(t^{[1]_{q}}-1\right) \delta_{i j}+\left(t^{[2]_{q}}-t^{[1]_{q}}\right) \delta_{i j}^{2}+\cdots\right) q_{\lambda}^{q}(t)
\end{align*}
$$

where $q_{\lambda}^{q}(t)$ are the projection of $Q_{\lambda}^{q}(t)$ defined as

$$
\prod_{i}\left\{\frac{1-t x_{i} y}{1-x_{i} y}\right\}_{q}=\sum_{r=0}^{\infty} q_{r}^{q}(x ; t) y^{r}
$$

and

$$
q_{\lambda}^{q}(x ; t)=\prod_{i} q_{\lambda_{i}}^{q}(x ; t)
$$

where y is an arbitrary parameter.

2.2. Recurrence relations of Q functions

The q-analogue of the recurrence relations obeyed by the Schur Q functions $Q_{\lambda}(-1)$ as given in [11] can be defined as

$$
\begin{aligned}
Q_{\lambda_{2} \lambda_{2} \cdots \lambda_{2}}^{q}= & Q_{\lambda_{2} \lambda_{2}}^{q} Q_{\lambda_{3} \lambda_{1} \cdots \lambda_{1}}^{q}-Q_{\lambda_{1} \lambda_{3}}^{q} Q_{\lambda_{2} \lambda_{4} \cdots \lambda_{1}}^{q} \\
& +\cdots+Q_{\lambda_{1} \lambda_{1}}^{q} Q_{\lambda_{2} \lambda_{3} \cdots \lambda_{t-1}}^{q} \quad \text { (l even) }
\end{aligned}
$$

and
$Q_{\lambda_{1} \lambda_{2} \cdots \lambda_{1}}^{q}=q_{\lambda_{1}}^{q} Q_{\lambda_{2} \lambda_{3} \cdots \lambda_{1}}^{q}-q_{\lambda_{2}}^{q} Q_{\lambda_{1} \lambda_{3} \cdots \lambda_{1}}^{q}+\cdots+q_{\lambda_{1}}^{q} Q_{\lambda_{2} \lambda_{3} \cdots \lambda_{1-1}}^{q}$
and
$Q_{\lambda_{1} \lambda_{3}}^{q}=q_{\lambda_{1}}^{q} q_{\lambda_{2}}^{q}-2 q_{\lambda_{1}+1}^{q} q_{\lambda_{2}-1}^{q}+\cdots+\left((-1)^{\left[\lambda_{2}\right]_{q}}+(-1)^{\left[\lambda_{2}-1\right]_{q}}\right) q_{\lambda_{1}+\lambda_{2}}^{q}$.
The last relation is directly derived from equation (13). Also for $q_{0}^{q}=1$ and $q_{-s}^{q}=0$ we have

$$
Q_{-\lambda_{r} \lambda_{r}}^{q}=\left((-1)^{\left[\lambda_{r}\right]_{q}}+(-1)^{\left[\lambda_{r}-1\right]_{q}}\right) \quad \text { and } \quad Q_{\lambda_{r}-\lambda_{r}}^{q}=0
$$

3. q-analogue of the symmetric group S_{n}

The q-deformation of the symmetric functions leads to the q-analogue of the characters of S_{n}.

The connection between the ordinary characters of S_{n} and S functions can be given as

$$
\begin{equation*}
s_{\lambda}=\sum_{\mu} z_{\mu}^{-1} \chi_{\mu}^{\lambda} p_{\mu} \tag{13}
\end{equation*}
$$

where χ_{μ}^{λ} is the character of the irrep $\{\lambda\}$ for the class $\{\mu\}$ and p_{μ} are power sum symmetric functions.

The spin characters are related to Schur's Q functions as follows

$$
\begin{equation*}
Q_{\lambda}=2^{[(l(\lambda)+l(\nu)+1) / 2]} \sum_{\nu} z_{\nu}^{-1} \zeta_{\nu}^{[\Delta ; \lambda]} p_{\nu} \tag{14}
\end{equation*}
$$

where $\zeta_{\nu}^{[\Delta ; \lambda]}$ is the spin character for the class ν of odd cycles only and [x] means the integer part of x.

We observe that for $s=t, P_{\lambda}^{q}(s, t)$ reduces to the q-deformed Schur function s_{λ}^{q} and for $s=0 \& t=-1, P_{\lambda}^{q}(s, t)$ reduces to the q-deformed Schur's Q function. Hence we can make a q-analogue of the equations (13) and (14) as follows

$$
\begin{equation*}
s_{\lambda}^{q}=\sum_{\mu}\left(z_{\mu}^{q}\right)^{-1} \chi_{\mu}^{\lambda}(q) p_{\mu} \tag{15}
\end{equation*}
$$

and

$$
\begin{equation*}
Q_{\lambda}^{q}=2^{[(l(\lambda)+l(\nu)+1) / 2]} \sum_{\nu}\left(z_{\nu}^{q}\right)^{-1} \zeta_{\nu}^{[\Delta ; \lambda]}(q) p_{\nu} \tag{16}
\end{equation*}
$$

3.1. q-deformed spin characters

In an earlier paper [13] we had presented the q-deformed ordinary characters of the symmetric group. The spin characters of S_{n} are normally calculated by using the recurrence relations of the Q functions along with (14) [11]. In this section we will use equation (16) and the q-analogue of the recurrence relations for the explicit calculations of the q-deformed spin characters.

Algorithm 1.

(i) Using (12), expand Q_{λ}^{q} in terms of q_{T}^{q}.
(ii) Write each q_{r}^{q} as

$$
q_{T}^{q}=\sum_{\rho}\left(z_{\rho}^{q}\right)^{-1} 2^{l(\rho)} p_{\rho}
$$

where ρ is a partition of r.
(iii) Equate this to expression (16) for Q_{λ}^{q}.
(iv) $\zeta_{\nu}^{\Delta ; \lambda}(q)$ can be calculated by comparing the coefficients of p_{ν} on both sides of the equation (16).
Using this algorithm and (1) we give the q-deformed spin characters of S_{4} in table 1. It is important to note that the basic spin characters are independent of q.

Table 1. q-dependent spin characters of S_{4}.

	1^{4}	21^{2}	22	31	4
$[\Delta ; 0]_{+}$	2	0	0	1	$\sqrt{2}$
$[\Delta ; 0]$	2	0	0	-1	$-\sqrt{2}$
$[\Delta ; 1]$	$2\left(q+q^{2}+q^{3}-1\right)$	0	0	-1	0

4. q analogue of vertex operators

Jing [5] has shown a relationship between vertex operators with a parameter t and the symmetric group S_{n} and its double covering group Γ_{n}. The parameter t plays a similar role in the description of vertex operators to one it plays in the theory of symmetric functions explained in the previous section, i.e. the vertex operators with $t=0$ correspond to S functions and those with $t=-1$ correspond to Schur's Q functions. Here we shall give a q-analogue of vertex operators and will show a $1: 1$ correspondence between the space of q-deformed vertex operators \mathcal{V}_{q} and the ring of q-deformed symmetric functions $\mathcal{Q}_{q}(t)$. The proofs given in this section will follow those in [6].

Vertex operators are defined with the help of infinite-dimensional Heisenberg algebras.

We shall define a q-analogue of a Heisenberg algebra \mathcal{H} as
Definition 1. The q-Heisenberg algebra \mathcal{H}_{q} is generated by a and $\zeta_{n}, n \in \mathcal{Z} / 0$, and satisfies the following relations

$$
\begin{equation*}
\left[\zeta_{m}, \zeta_{n}\right]_{q}=\frac{[m]_{q}}{1-t^{[m]_{q}}} \delta_{m+n, 0} a \quad\left[\zeta_{m}, a\right]_{q}=0 \tag{17}
\end{equation*}
$$

where t is a parameter.
As usual $S\left(\mathcal{H}_{q}^{-}\right)$is the symmetric algebra generated by $\zeta_{-n}, n \in \mathbb{N} . \zeta_{-n}$ is regarded as a multiplication operator and ζ_{n} as an annihilation operator on $S\left(\mathcal{H}_{q}^{-}\right)$. As an example,

$$
\zeta_{n} \zeta_{-n} \cdot 1=\frac{[n]_{q}}{1-t^{[n] q}} \quad n \in \mathbb{N}
$$

where a is considered as an identity operator.
Now we can define the q-analogue of a simplified form of vertex operators on the space $S\left(\mathcal{H}_{q}^{-}\right)$as follows

$$
\begin{align*}
V(x) & =\exp \left\{\sum_{n \geqslant 1} \frac{1-t^{[n]_{q}}}{[n]_{q}} \zeta_{-n} x^{n}\right\} \exp \left\{-\sum_{n \geqslant 1} \frac{1-t^{[n]_{q}}}{[n]_{q}} \zeta_{n} x^{-n}\right\} \tag{18}\\
& =\sum_{n \in \mathbf{Z}} V_{n} x^{-n} \\
V^{*}(x) & =\exp \left\{-\sum_{n \geqslant 1} \frac{1-t^{[n]_{q}}}{[n]_{q}} \zeta_{-n} x^{n}\right\} \exp \left\{\sum_{n \geqslant 1} \frac{1-t^{[n]_{q}}}{[n]_{q}} \zeta_{n} x^{-n}\right\} \tag{19}\\
& =\sum_{n \in \mathbf{Z}} V_{n}^{*} x^{n} .
\end{align*}
$$

We define a Hermitian structure \langle,$\rangle in the space S\left(\mathcal{H}_{\boldsymbol{q}}^{-}\right)$

$$
\left\langle\zeta_{-n}, \zeta_{-n}\right\rangle=\frac{[n]_{q}}{1-t^{[n]_{q}}}
$$

or, in general,

$$
\left\langle\zeta_{-\lambda}, \zeta_{-\mu}\right\rangle=z_{\lambda}^{q}(t) \delta_{\lambda \mu}
$$

where $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{l}\right)$ and $\mu=\left(\mu_{1}, \mu_{2}, \ldots, \mu_{k}\right)$ are partitions.
A polynomial function in ζ_{-n} can be defined as follows

$$
\begin{equation*}
\exp \left(t^{[n]_{q}}[n]_{q} \zeta_{-n} x^{n}\right)=\sum_{n \geqslant 0} R_{n}^{q}(t) x^{n} \tag{20}
\end{equation*}
$$

Hence

$$
\begin{equation*}
R_{n}^{q}(t)=\sum_{|\lambda|=n}\left(z_{\lambda}^{q}(t)\right)^{-1} \zeta_{-\lambda} \quad \zeta_{-\lambda}=\zeta_{-\lambda_{1}} \zeta_{-\lambda_{2}} \ldots \zeta_{-\lambda_{i}} \tag{21}
\end{equation*}
$$

The normal ordering product is used when the annihilation operator has to be moved to the right of the product [3], as shown here.

$$
\begin{aligned}
: V(x) V(y): & =\exp \left\{\sum_{n \geqslant 1} \frac{1-t^{[n]_{q}}}{[n]_{q}} \zeta_{-n}\left(x^{n}+y^{n}\right)\right\} \\
& \times \exp \left\{-\sum_{n \geqslant 1} \frac{1-t^{[n]_{q}}}{[n]_{q}} \zeta_{n}\left(x^{-n}+y^{-n}\right)\right\}
\end{aligned}
$$

and

$$
V(x) V(y)=: V(x) V(y):\left\{\frac{x-y}{x-t y}\right\}_{q}
$$

where the subscript q indicates that the factor $\{(x-y / x-t y)\}_{q}$ is a formal series in y / x with the powers of t being q-numbers.

Using the q-analogue of Young raising operators we give a q-analogue of Jing's proposition (2.17) [6] as follows.

Theorem 1. For a partition $\lambda=\left(\lambda_{1} \lambda_{2} \ldots \lambda_{l}\right)$ the element $V_{-\lambda} \cdot 1$ can be expressed as

$$
V_{-\lambda} \cdot 1=\prod_{i<j}\left\{\frac{1-\delta_{i j}}{1-t \delta_{i j}}\right\}_{q} R_{\lambda}^{q}(t)
$$

where $\delta_{i j}$ is Young's raising operator whose action is defined as

$$
\delta_{i j} R_{\left(\lambda_{1} \ldots \lambda_{i} \ldots \lambda_{j} \ldots\right)}^{q}=R_{\left(\lambda_{1} \ldots \lambda_{i}+1 \ldots \lambda_{j}-1 \ldots\right)}^{q}
$$

and the subscript q in $\left\}_{q}\right.$ means the powers of t are q-numbers.

Proof. The action of the components of the vertex operators $V(x)$ as defined in (18) can be shown to be

$$
V_{-n} .1=\frac{1}{2 \pi i} \int_{c} \exp \left(\sum_{m \geqslant 1} \frac{1-t^{[m]_{q}}}{[m]_{q}} \zeta_{-m} x^{m}\right) X^{-n} \frac{\mathrm{~d} x}{x}
$$

where the subscript c is for the contour integral.
Then it is easy to see the trivial result

$$
V_{-n} \cdot 1=R_{n}^{q}(t)
$$

For the rest, let us use the contour integral approach. For any partition $\lambda=\lambda_{1} \ldots \lambda_{l}$,

$$
\begin{aligned}
V_{-\lambda} \cdot 1 & =\underbrace{\int \cdots \int}_{l} V\left(x_{1}\right) \ldots V\left(x_{l}\right) \cdot 1 x^{-\lambda} \frac{\mathrm{d} x_{1}}{x_{1}} \cdots \frac{\mathrm{~d} x_{l}}{x_{l}} \\
& =\frac{1}{(2 \pi \mathrm{i})^{l}} \int \exp \left(\sum_{i=1, n \geqslant 1}^{1} \frac{1-t^{[n]_{q}}}{[n]_{q}} \zeta_{-n} x_{i}^{n}\right) \prod_{1 \leqslant i<j \leqslant l}\left\{\frac{x_{i}-x_{j}}{x_{i}-t x_{j}}\right\}_{q} x^{-\lambda} \frac{\mathrm{d} x}{x}
\end{aligned}
$$

where the term $\left\{x_{i}-x_{j} / x_{i}-t x_{j}\right\}_{q}$, comes from the normal ordering of the creation and annihilation operators. Using the definition of $R_{n}^{q}(t)$, we can write the following.

$$
V_{-\lambda} \cdot 1=\frac{1}{(2 \pi \mathrm{i})^{i}} \int \sum_{n \in N^{i}} R_{n}^{q}(t) \prod_{i<j}\left\{\frac{x_{i}-x_{j}}{x_{i}-t x_{j}}\right\}_{q} x^{-\lambda+n} \frac{\mathrm{~d} x}{x} .
$$

Expanding the formal series $\left\{x_{i}-x_{j} / x_{i}-t x_{j}\right\}_{q}$ for $i=1$ we get

$$
\begin{aligned}
& V_{-\lambda} \cdot 1=\frac{1}{(2 \pi \mathrm{i})^{l}} \int \sum_{n \in N^{l}} R_{n}^{q}(t) \prod_{j=2}^{l}\left(1+\left(t^{[1]_{q}}-1\right) \frac{x_{j}}{x_{1}}+\left(t^{[2]_{q}}-t^{[1]_{q}}\right) \frac{x_{j}^{2}}{x_{1}^{2}}+\cdots\right) \\
& \times \prod_{2 \leqslant i<j \leqslant 1}\left\{\frac{x_{i}-x_{j}}{x_{i}-t x_{j}}\right\}_{q} x^{-\lambda+n} \frac{\mathrm{~d} x}{x} \\
&=\frac{1}{(2 \pi \mathrm{i})^{l-1}} \prod_{j=2}^{l}\left(1+\left(t^{[1]_{q}}-1\right) \delta_{1 j}+\left(t^{[2]_{q}}-t^{[1]_{q}}\right) \delta_{1 j}^{2}+\cdots\right) \\
& \times \int \sum_{\tilde{n}} R_{\lambda_{1}}^{q}(t) R_{\tilde{n}}^{q}(t) \\
& \times \prod_{2 \leqslant i<j \leqslant l}\left\{\frac{x_{i}-x_{j}}{x_{i}-t x_{j}}\right\}_{q} \tilde{x}^{-\tilde{\lambda}+\tilde{n}} \frac{\mathrm{~d} \tilde{x}}{\tilde{x}} \\
&=\prod_{i<j}\left\{\frac{1-\delta_{i j}}{1-t \delta_{i j}}\right\}_{q} R_{\lambda}^{q}(t)
\end{aligned}
$$

where $\tilde{\lambda}=\lambda_{2}, \lambda_{3}, \ldots \lambda_{l}, \tilde{x}=x_{2} \ldots x_{l}, \mathrm{~d} x / x=\mathrm{d} x_{1} / x_{1} \ldots \mathrm{~d} x_{l} / x_{l}$ and $R_{\lambda}^{q}(t)=$ $R_{\lambda_{1}}^{q}(t) R_{\lambda_{2}}^{q}(t) \ldots R_{\lambda_{1}}^{q}(t)$. The orthogonality of the q-analogue of vertex operators can be described by the following theorem.

Theorem 2. For two partitions $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}\right)$ and $\mu=\left(\mu_{1}, \mu_{2}, \ldots, \mu_{l}\right)$

$$
\begin{equation*}
\left\langle V_{-\lambda} \cdot 1, V_{-\mu} \cdot 1\right\rangle_{q}=b_{\lambda}^{q}(t) \delta_{\lambda \mu} \tag{22}
\end{equation*}
$$

where

$$
\begin{equation*}
b_{\lambda}^{q}(t)=\prod_{i \geqslant 1} \phi_{m_{i}(\lambda)}^{q}(t) \quad \phi_{n}^{q}(t)=\prod_{j \geqslant 1}^{n}\left(1-t^{[j]_{q}}\right) \tag{23}
\end{equation*}
$$

and m_{i} is the number of occurrences of i in λ.
In order to prove this we will give q-analogues of some of Jing's results [6].

Lemma 1. For $m, n \in N$, we have

$$
V_{-n}^{*} V_{-m} \cdot 1=\delta_{m, n}\left(1-t^{[1]_{q}}\right)
$$

The proof of this lemma is straightforward using the properties of the components of vertex operators.

Proposition 1. Let $\lambda=\left(1^{m_{1}}, 2^{m_{2}}, \ldots\right)$ and $\tilde{\lambda}=\left(1^{m_{1}-1}, 2^{m_{2}}, \ldots\right)$ then we have

$$
V_{-n}^{*} V_{=\lambda} \cdot 1=\delta_{n, \lambda_{i}}\left(1-t^{\left[m_{1}\right]_{q}}\right) V_{-i} \cdot 1
$$

The previous lemma and the inductive assumptions prove this proposition.

Now the orthogonality of the q-deformed vertex operators can be proved as follows.

For two partitions λ and μ, such that $|\lambda|=|\mu|$ we have

$$
\begin{aligned}
\left\langle V_{-\lambda} \cdot 1, V_{-\mu} \cdot 1\right\rangle_{q} & \left.=V_{-\tilde{\lambda}} \cdot 1, V_{-\lambda_{1}}^{*} V_{-\mu} \cdot 1\right\rangle_{q} \\
& =\left\langle V_{-\tilde{\lambda}} \cdot 1, \delta_{\lambda_{1}, \mu_{1}}\left(1-t^{\left[m_{1}(\mu)\right]_{q}}\right) V_{-\tilde{\mu}} \cdot 1\right\rangle_{q} \\
& =\delta_{\lambda_{1}, \mu_{1}}\left(1-t^{\left[m_{1}(\mu)\right]_{q}}\right)\left\langle V_{-\tilde{\lambda}} \cdot 1, V_{-\tilde{\mu}} \cdot 1\right\rangle_{q}
\end{aligned}
$$

By repeating this we get

$$
\left\langle V_{-\lambda} \cdot 1, V_{-\mu} \cdot 1\right\rangle_{q}=b_{\lambda}^{q}(t) \delta_{\lambda \mu}
$$

which is the desired result.
Comparing the inner product $\left(\zeta_{-\lambda}, \zeta_{-\mu}\right)=z_{\lambda}^{q}(t) \delta_{\lambda \mu}$, and (8), we can define a mapping from \mathcal{V}_{q} to $\Lambda \otimes_{\mathcal{Z}} \mathcal{Q}_{q}(t)$ as follows.

Definition 2. The mapping $\rho: \mathcal{V}_{q} \rightarrow \Lambda \otimes_{\mathcal{Z}} \mathcal{Q}_{q}(t)$ for a partition $\lambda=\left(1^{m_{1}} 2^{m_{2}} \ldots l^{m_{1}}\right)$ is given by

$$
\rho\left(\zeta_{-\lambda}\right)=\rho\left(\zeta_{-1}^{m_{1}} \zeta_{-2}^{m_{2}} \ldots \zeta_{-l}^{m_{1}}\right)=p_{1}^{m_{1}} p_{2}^{m_{2}} \ldots p_{l}^{m_{1}}=p_{\lambda}
$$

This immediately gives

$$
\begin{equation*}
\rho\left(V_{-\lambda} \cdot 1\right)=\rho\left(V_{-\lambda_{1}} V_{-\lambda_{2}} \ldots V_{-\lambda_{i}} \cdot 1\right)=\prod_{i<j}\left\{\frac{1-\delta_{i j}}{1-t \delta_{i j}}\right\}_{q} q_{\lambda}^{q} \tag{24}
\end{equation*}
$$

Comparing (24) and the identity

$$
\left\langle Q_{\lambda}^{q}(t), Q_{\mu}^{q}(t)\right\rangle=b_{\lambda}^{q}(t) \delta_{\lambda \mu}
$$

we conclude that for a general value of t the map $\rho: \mathcal{V}_{q} \rightarrow \Lambda \otimes_{\mathcal{Z}} \mathcal{Q}_{q}(t)$ takes the form

$$
\begin{equation*}
\rho\left(V_{-\lambda_{1}} V_{-\lambda_{2}} \ldots V_{-\lambda_{1}}(t) .1\right)=Q_{\lambda}^{q}(t) \tag{25}
\end{equation*}
$$

The specializations $t=0,-1$ give the following results

$$
\begin{equation*}
\rho\left(V_{-\lambda_{1}} V_{-\lambda_{2}} \cdot V_{-\lambda_{1}}(-1) \cdot 1=Q_{\lambda}^{q}(-1)\right. \tag{26}
\end{equation*}
$$

and

$$
\begin{equation*}
\rho\left(V_{-\lambda_{1}} V_{-\lambda_{2}} \ldots V_{-\lambda_{1}}(0) .1\right)=s_{\lambda}^{q} \tag{27}
\end{equation*}
$$

where $Q_{\lambda}^{q}(-1)$ are the q-deformed Schur Q functions and s_{λ}^{q} are the q-deformed S functions.

5. Construction of untwisted \boldsymbol{q}-vertex operators

In previous sections we have worked out the q-analogue of the vertex operators. On the basis of (18) and (19) we define the untwisted q-vertex operators in normal ordered form as follows.

$$
\begin{align*}
U(z) & =\exp \left\{\sum_{n \geqslant 1} \frac{1-t^{[n]}}{[n]} \zeta_{-n} z^{n}\right\} \exp \left\{-\sum_{n \geqslant 1} \frac{1-t^{[n]}}{[n]} \zeta_{n} z^{-n}\right\} \mathrm{e}^{\varsigma} z^{\zeta_{(0)}+1} \\
& =\sum_{n \in \mathbb{Z}} U_{n} z^{-n} \tag{28}\\
& =: U(z):
\end{align*}
$$

and

$$
\begin{align*}
U^{*}(z) & =\exp \left\{-\sum_{n \geqslant 1} \frac{1-t^{[n]}}{[n]} \zeta_{-n} z^{n}\right\} \exp \left\{\sum_{n \geqslant 1} \frac{1-t^{[n]}}{[n]} \zeta_{n} z^{-n}\right\} \mathrm{e}^{\zeta} z^{-\left(\zeta_{(0)}+1\right)} \\
& =\sum_{n \in \mathbf{Z}} U_{n}^{*} z^{n} \tag{29}\\
& =: U^{*}(z):
\end{align*}
$$

where z is a non-zero complex number and the action of $\zeta_{(0)}$ is defined as

$$
\zeta_{(0)} \mathrm{e}^{\eta}=\langle\eta, \zeta\rangle \mathrm{e}^{\eta} \quad \eta, \zeta \in S\left(\mathcal{H}_{q}^{-}\right)
$$

The factors $\mathrm{e}^{\zeta} z^{-\left(\zeta_{(0)}+1\right)}$ and $\mathrm{e}^{\zeta} z^{\zeta} \zeta_{(0)}+1$ arise from the commutation of annihilation operators as they are transferred to the right in accordance with normal ordering. For $t \rightarrow 0$ and $q \rightarrow 1$ these expressions take a similar form to the vertex operators used in dual resonance theory [4].

There is another way of developing the untwisted q-vertex operators. Consider a finitely generated free Abelian group L and define a non-singular symmetric \mathcal{Z} bilinear form \langle,$\rangle on L$ such that

$$
\langle\zeta, \zeta\rangle \in 2 \mathcal{Z} \quad \text { for } \quad \zeta \in L
$$

Define the function

$$
\begin{aligned}
& C: L \times L \rightarrow \mathcal{F} \\
& (\zeta, \eta) \mapsto(-1)^{(\zeta, \eta)} \omega^{(m \zeta, \eta)}=\prod\left(-\omega^{m}\right)^{(\zeta, \eta)}
\end{aligned}
$$

where ω is the k th primitive root of unity and $m \in \mathcal{Z} / k \mathcal{Z}$. Then the commutator $\operatorname{map} C$ is bilinear into the Abelian group \mathcal{F} such that

$$
\begin{align*}
& C(\zeta+\eta, \theta)=C(\zeta, \theta) C(\eta, \theta) \\
& C(\zeta, \eta+\theta)=C(\zeta, \eta) C(\zeta, \theta) \tag{30}
\end{align*}
$$

and

$$
\begin{equation*}
C(\zeta, \zeta)=1 \tag{31}
\end{equation*}
$$

for $\zeta, \eta, \theta \in L$.
Let $\omega_{0}=(-1)^{k} \omega$. In view of equations (30) and (31) there is a unique central extension

$$
\begin{equation*}
1 \rightarrow\left\langle\omega_{0}\right\rangle \rightarrow \hat{L} \rightrightarrows L \rightarrow 1 \tag{32}
\end{equation*}
$$

of L by the cyclic group generated by ω_{0} with commutator map C such that

$$
a b a^{-1} b^{-1}=C(\bar{a}, \bar{b}) \quad \text { for } a, b \in \hat{L}
$$

We fix $a \in \hat{L}$ such that $\bar{a}=\zeta$. This construction gives us the following form of the q-vertex operators.

$$
\begin{align*}
\mathcal{X}(z) & =\exp \left\{\sum_{n \geqslant 1} \frac{1-t^{[n]_{q}}}{[n]_{q}} \zeta_{-n} z^{n}\right\} \exp \left\{-\sum_{n \geqslant 1} \frac{1-t^{[n]_{q}}}{[n]_{q}} \zeta_{n} z^{-n}\right\} a z^{\zeta_{(0)}+1} \tag{33}\\
& =\sum_{n \in \mathbb{Z}} \mathcal{X}_{n} z^{n}
\end{align*}
$$

where the $a \in \hat{L}$. For a special case of

$$
\left\langle\omega_{0}\right\rangle \equiv\langle \pm 1\rangle
$$

we get

$$
a b a^{-1} b^{-1}=(-1)^{(\bar{a}, b\rangle} \quad \text { for } a, b \in \hat{L}
$$

and the untwisted q-vertex operators take the following form.

$$
\begin{align*}
\mathcal{X}^{ \pm}(z) & =\exp \left\{ \pm \sum_{n \geqslant 1} \frac{1-t^{[n]_{q}}}{[n]_{q}} \zeta_{-n} z^{n}\right\} \exp \left\{\mp \sum_{n \geqslant 1} \frac{1-t^{[n]_{q}}}{[n]_{q}} \zeta_{n} z^{-n}\right\} a^{ \pm 1} z^{ \pm \zeta_{(0)}+1} \tag{34}\\
& =\sum_{n \in \mathbf{Z}} \mathcal{X}_{n}^{ \pm} z^{n}
\end{align*}
$$

For $t=0$ this expression is similar to the one given by Frenkel and Jing [2] in the description of quantum affine algebras, except that they have used a different definition of q-number. Equation (34) is the most general expression for the vertex operators of untwisted type. With the various specializations of q and t one can derive all the vertex operators discussed earlier.

6. Construction of twisted q-vertex operators

Twisted vertex operators are now obtained by the action of an automorphism of a certain group M defined below. Closely following the terminology and notation used in $[8]$ and using the results of the previous section, we define the following.
(i) M is a finitely generated free Abelian group.
(ii) \langle,$\rangle is a non-singular symmetric \mathcal{Z}$-bilinear form on M such that

$$
\langle\zeta, \zeta\rangle \in 2 \mathcal{Z} \quad \text { for } \zeta \in M .
$$

(iii) σ is an automorphism of M such that

$$
\langle\sigma \zeta, \sigma \eta\rangle=\langle\zeta, \eta\rangle \quad \text { for } \zeta, \eta \in M .
$$

(iv) m is a positive integer such that $\sigma^{m}=1$.
(v)

$$
\left\langle\sum_{p \in \mathcal{Z} / m \mathcal{Z}} \sigma^{p} \zeta, \zeta\right\rangle \in 2 \mathcal{Z} \quad \text { for } \zeta \in M .
$$

Considering the action of the automorphism σ we redefine the commutator map C as follows.

$$
\begin{gathered}
C: M \times M \rightarrow \mathcal{F} \\
(\zeta, \eta) \mapsto(-1)^{{ }^{\left(\sum_{p \in \mathcal{Z} / m Z} \mathcal{Z}^{\rho} \zeta, \eta\right\rangle} \omega^{\left(\sum_{p \in \mathcal{Z} / m \mathcal{Z}} p \sigma^{p} \zeta, \eta\right\rangle} \prod_{p \in \mathcal{Z} / m Z}\left(-\omega^{p}\right)^{\left\langle\sigma^{p} \zeta, \eta\right)} .} .
\end{gathered}
$$

Along with equations (30) and (31) we include the following

$$
\begin{equation*}
C(\sigma \zeta, \sigma \eta)=C(\zeta, \eta) \quad \text { for } \zeta, \eta \in M \tag{35}
\end{equation*}
$$

and

$$
\begin{equation*}
C(\zeta, \eta)=C(\eta, \zeta)^{-1} \quad \text { for } \zeta, \eta \in M \tag{36}
\end{equation*}
$$

Then the central extension of M by the cyclic group generated by ω_{0} with the commutator map C is

$$
\begin{equation*}
1 \rightarrow\left\langle\omega_{0}\right\rangle \rightarrow \hat{M} \rightrightarrows M \rightarrow 1 \tag{37}
\end{equation*}
$$

such that

$$
a b a^{-1} b^{-1}=C(\bar{a}, \bar{b}) \quad \text { for } a, b \in \hat{M} .
$$

The automorphism σ can be extended to an automorphism $\hat{\sigma}$ of the extension \hat{M} of M such that

$$
(\hat{\sigma} a)^{-}=\sigma \bar{a} \quad \forall a \in \hat{M}
$$

and

$$
\hat{\sigma} a=a \omega^{-\sum_{p \in z / m z} \sigma^{p} \bar{a}(0)-\left(\sigma^{p} \bar{a}, \bar{a}\right) / 2} .
$$

Now the twisted q-vertex operators can be defined as

$$
\begin{equation*}
\mathcal{X}(z)=\mathcal{E}_{-}(\zeta, z) \mathcal{E}_{+}(\zeta, z) a z^{-\sum_{p \in z / m \mathcal{Z}} \sigma^{\rho} \bar{a}(0)-\left|\sigma^{p} \bar{a}, \bar{a}\right\rangle / 2} \tag{38}
\end{equation*}
$$

where

$$
\mathcal{E}_{ \pm}=\exp \left\{\sum_{ \pm n \geqslant 1} \frac{1-t^{[n]_{q}}}{[n]_{q}} \zeta_{-n} z^{n}\right\}
$$

Again for the special case of

$$
\left\langle\omega_{0}\right\rangle \equiv\langle \pm 1\rangle
$$

we get

$$
a b a^{-1} b^{-1}=(-1)^{(\bar{a}, \bar{b})} \quad \text { for } a, b \in \hat{M}
$$

and the twisted q-vertex operators take the form

$$
\begin{align*}
\mathcal{X}^{ \pm}(z) & =\mathcal{E}_{-}^{ \pm}(\zeta, z) \mathcal{E}_{+}^{ \pm}(\zeta, z) a^{ \pm 1} z^{ \pm \sum_{p \in \mathcal{Z} / m} \sigma^{户} \bar{a}(0)-\left(\sigma^{户} \bar{a} \bar{a}\right) / 2} \\
& =\sum_{n \in \mathbb{Z}} \mathcal{X}_{n}^{ \pm} z^{n} \tag{39}
\end{align*}
$$

where

$$
\mathcal{E}_{-}^{ \pm}=\exp \left\{ \pm \sum_{n \geqslant 1} \frac{1-t^{[n]_{q}}}{[n]_{q}} \zeta_{-n} z^{n}\right\}
$$

and

$$
\mathcal{E}_{+}^{ \pm}=\exp \left\{\mp \sum_{n \geqslant 1} \frac{1-t^{[n]_{q}}}{[n]_{q}} \zeta_{n} z^{n}\right\} .
$$

For the specialization $t=0$ equation (39) gives a similar result to the one reported in [7] except that the definition of q-number is different. Also for $q=1$ and $t=0$ this result is similar to the case studied by Lepowsky [8]. We find that the expression (39) is a very general form of vertex operators. Various specializations of t, q and σ give the desired results. For example, in the case of identity automorphism $\sigma=1$ we get the untwisted q-vertex operators and equation (39) reduces to (34).

7. Conclusion

A q-analogue of the Heisenberg algebra is defined. This leads to the construction of q-vertex operators with a parameter t similar to the theory of symmetric functions. An isomorphism from the space of q-vertex operators to the ring $\Lambda_{\mathcal{Q}}^{q}$ of the q-deformed vertex operators is defined explicitly. This isomorphism is valid for a general value of t and as well as the specialized values such that $t=0$ and $t=-1$ in which case we get S functions and Schur Q functions. Using these results a very simple technique for the construction of twisted and untwisted q-vertex operators is developed. This approach is more simple and straightforward than any other technique. The final result is a very general form of the vertex operators and by the specializations of various parameters, the results can be verified.

Acknowledgments

One of us (MAS) is grateful to the University of Canterbury for the award of a Roper Scholarship for Science while the other (BGW) is appreciative of the hospitality afforded by the Physics Department of the University of the Pacific via NSF grant CHE 870-8303.

References

[1] Drinfeld V G 1988 Soviet Math Dokl 36 2-216
[2] Frenkel I B and Jing N H 1988 Proc. Natl Acad. Sci. USA 85 9373-7
[3] Frenkel I B, Lepowsky J and Meurman A 1988 Vertex Operator Algebras and the Monster (New York: Academic)
[4] Goddard P and Olive D 1986 Int. J. Mod. Phys. A 1 303-414
[5] Jing N H 1991 J. Algebra 138 340-98
[6] Jing N H 1990 Vertex operators and Hall-Littlewood symmetric functions Preprint School of Mathematics, Institute for Advanced Study, Princeton, NJ
[7] Jing N H 1990 Twisted vertex representations of quantum affine algebras Preprint Institute for Advanced Study, USA
[8] Lepowsky J 1985 Rroc. Natl Acad Sci USA 82 8295-9
[9] Macdonald IG 1979 Synmetric Functions and Hall Polynomials (Oxford: Oxford University Press)
[10] Macdonald I G 1988 A New Class of Symmetric Functions PubL. IRMA Strasbourg, Actes 2Oth Seminaire Lotharingien 372/S-20 131-71
[11] Mortis A O 1962 Proc. London Math. Soc. 12 55-76
[12] Neveu A and Scherk J 1970 Phys. Rev. D 12355
[13] Salam M A and Wybourne B G 1991 J. Phys. A: Math. Gcn. 24 L317-21
[14] Schwartz J H 1973 Phys. Rep. 8 269-335
[15] Stembridge J R 1989 Adv. Math. 74 109-53
[16] Stone M 1991 Int. J. Mod. Phys. B 5 509-277

