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en! spin characters of the sym-
metric group is given with an explicit example of S;. A method for constructing the
g-analogue of the vertex operators is developed. A 1:l correspondence between the
space V of twisted g-vertex operators and the ring of g-deformed symmetric functions
A @z Q(g,t) is established and a mapping from V — A @z Q(q, t) s defined. A
number of relevant theorems are given.

i. Introduction

The development of methods for constructing and studying integrable quantum mod-
els has recently led to new algebraic structures known as quantum groups [1] or,
more precisely, quantum affine Lie algebras. Finding vertex operator representations
of quantum affine algebras is a natural issue in the study of quantum groups. Besides,
recent progress in conformal field theories has shown the important role played by
vertex operator algebras in quantum field theories [4].

These developments have stimulated much activity in both mathematicians and
physicists. In a recent paper [2] Frenkel and Jing have constructed the untwisted
vertex representations of quantum affine algebras and more recently Jing [7] has de-
veloped the twisted g-vertex operators. Drinfeld’s theorem of quantum affine algebras
[1] plays the crucial role in such constructions.

First of all we will reconstruct the ring A, of q-deformed symmetric functions
by using a different type of g-deformation then we will show that there exists an
isomorphism between the ring A} and the space V, of gdeformed vertex operators.
These g-deformed vertex operators are nothing but the g-analogue of the untwisted
vertex operators used in the description of affine Kac-Moody algebras [4]. This leads
to a very simple way of constructing the twisted g-vertex operators.

In this paper we will closely follow the notation of {9, 10, 13] and will use the
results therein.

2. The ring AL

In [13], we gave the g-deformation of the Hall-Littlewood symmetric function
P, (s,1) using the following definition of g-number
[nl,=14+q+¢*+ - +q". (1)
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It is possible to consistently define various types of g-deformations of symmetric
functions such as in terms of the g-numbers

-9

n], = ——— 2
7], = "5 @
as used in the description of quantum groups [1]. We will use (2) for the definition
of a g-number unless specified otherwise. The g-analogue of the Hall-Littlewood
symmetric functions will form the basis of the ring A}, of the g-deformed symmetric
functions. A g-analogue of complete symmetric functions can be defined as

M= 3 ()78 Q)
[Al=n
where
2 = [l Im], ! @

In [10} it has been shown that P,(s,t) is the generalized form of the Hall-
Littlewood symmetric function. Let us define a scalar product { , )(s 5 over Q,(s, )
as follows

(p}\’ pu)%i?t) = (5‘\“Z§\(S,t) (5)

where

1N

— glrile
4@@=HW“JqH%Tm¥ ©

and Q (s,t) is the g-analogue of the field of rational functions in independent inde-
terminates s and ¢. We call P{(s,t), the q-deformation of the symmetric function
P,(s,t) and define

_ (txtyss)oo
%‘H{mﬁmmh

where

(2 8) 0 H(l-—as

r=0_0

and the subscript g in { } indicates that the powers of ¢ and s are g-numbers.

Pz yis, 1) = 21(s, 1) pal@)pa(y). )
A
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FProof. We compute exp(logP,);

o
log P, = ZZ {log(1 ~ 2;y;87) "1 — log{1 ~ t.z"-yjs’)‘l}q

1,5 r=9
=Z§§I 7 (e (1= )
_x 1 (1~—t[ lv)

Hence

—_ ["]q
7, =[] exp (ﬁ:%ﬁpn(m)pnw))

nxl

_ 4in)y e
~0 > ( e )pn(y))

nElmp=l

in which the coefficient of p,(x)p,(y) is seen to be z{(s,t)~!. Here we have made
use of the g-exponential function defined as

Hence for s = 0 we get

ST (Y PH(m ) Pi(ui 1)
A

ll

where P{(=z;t) and P{{y;t) are the g-deformed Hall-Littlewood syrometric func-
tions and will be denoted by PJ(t), and b}(¢) is defined in (11).

Expression (7) is a very general definition of symmecric functions and all the
symmetric functions (Hall-Littlewood, Schur’s Q, Jack, zonal and Schur) are special
cases of g-deformed symmetric functions. For ¢ = 1 and s = 0, P}(¢) reduces to
Hall-Littlewood symmetric functions and for s = 1, ¢ = 1 we get Jack symmetric
functions, where o is an arbitrary parameter. For ¢ = 1 and s = t, P{(s,t) reduces
to 5 functions. We can also have g-0eformations of symmetric functions by setting
q # 0,1 any arbitrary complex number. For example, £7(0,1) or simply P}(¢)
is the g-deformation of the Hall-Littlewood symmetric function which is our major
concern here.

Thus the scalar product {, )%f)) over Q (1) is given by

)
(Prs 28 = 82,25 (2) 8

where
1A

A =TT tm, T (1 100) ©

3
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2.1. Duality and orthogonality

Let us introduce another symmetric function Qf(t) related to P{(t) by a scalar

b (t) as follows

QL) = BL(DPL()

where

() =T]¢L.® @ =]] (1 - tm,)

ix1 izt
and m; is the number of occurrences of 7 in A. Then
(PI(1),QL(1)) = §,,,

ie. Py(t),Q{(t) are dual bases of Af, for the scalar product (
that

— 5.
Q1) = H{ll_w‘j’_} g (1)
J)g

1<

= H (_1 + (it —~ 1)6;; + (¢l — tIl]‘?)&fj +

i<y

where g}(2) are the projection of Q4(t) defined as
1 -tz y} Z

H qi(z; )y"

; { 1—zy

and
gf(z:t) = ] of, (25 1)
where y s an arbitrary parameter.

2.2, Recurrence relations of Q functions

(10)

an

» ). It is easy to see

(12
) 4} (®)

The g-analogue of the recurrence relations obeyed by the Schur © functions Q,(~1)

as given in [11] can be defined as

q — 9 q — N9 q
Q,\,,\,...A, - Q‘\p\ng\a)g-'-Aj QAIA,QA;.A.,---A.
q q
+---+ QA1)\:Q>\3-\3~-M-1 (I even)

and

] = o O 7 N9 7 04
Q)‘IA:'”AI - qr\xQ»\:)\s'-'-\l . qa\zQ»\Ma”'M + + 5V VS VNS PO

and

(1 odd)

A Aa=1
Q?\‘A, Q)\lqh 2qA1+1qA,_1+ +(( 1)[ 2k + (~ 1)[2 ]q) S

The last relation is directly derived from equation (13). Also for gf =1 and g7, =0

we have
Q7y, = (=D 4 (-DP)  and
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3. g-analogue of the symmetric group S,

The g-deformation of the symmetric functions leads to the g-analogue of the charac-
ters of S,,.

The connection between the ordinary characters of S, and S functions can be
given as

=Y =, (13)
I

where X; is the. character of the irrep {A} for the class {n} and p, are power sum
symmetric functions.
The spin characters are related to Schur’s @ functions as follows

Q, = 2+HE)+1)/2 Z 2 laM g, (14)
v

where ¢I** is the spin character for the class v of odd cycles only and [z] means
the integer part of z.

We observe that for s = t, Py{s,t) reduces to the g-deformed Schur function
slandfors=0&t=-1, Pq(s t) reduces to the g-deformed Schur’s @ function.

Hence we can make a g-analogue of the equations (13) and (14) as follows

3= (D) xMa)e, (15)
m

and
QY = 2UOHEHDIA S (ay-1claidl(g)p, (16)

3.1. g-deformed spin characters

In an earlier paper [13] we had presented the g-deformed ordinary characters of
the symmetric group. The spin characters of S, are normally calculated by using
the recurrence relations of the @ functions alnnu with (14) Hﬂ In thig section we

will use equation (16) and the q-analogue of the recurrence re]anons for the explicit
calculations of the g-deformed spin characters.

~ Algorithm 1.

(i) Using (12), expand Q{ in terms of q7.
(i} Write each g7 as

al =3 (112,
o)

where p is a partition of r.
(iii) Equate this to expression (16) for Q.

(iv) fﬁ '\(n\ can be calculated by comparing the coefficients of p

LA Ve RLlaaiNAAl SRS

of the equanon (16).

p, on both sideg

Using this algorithm and (1) we give the g-deformed spin characters of S, in table 1.
It is important to note that the basic spin characters are independent of q.
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Table 1. g-dependent spin characters of 5.

14 212 22 31 4
(A0l 2 0 0 1 vz
(A0 2 0 0 -1 -2
(a;1] g+ +¢ -1 0 o -1 0
A o mmmalomeas AP vaswtar Anasndano
L q-ﬂl ll.lgl.ll: Uk YTl A WPTLALULD

Jing [5] has shown a relationship between vertex operators with a parameter ¢ and
the symmetric group S, and its double covering group I',. The parameter ¢ plays
a similar role in the description of vertex operators to one it plays in the theory of
symmetric functions explained in the previous section, i.e. the vertex operators with
t = 0 correspond to S functions and those with ¢ = —1 correspond to Schurs Q
functions. Here we shall give a g-analogue of vertex operators and will show a 1:1
correspondence between the space of g-deformed vertex operators V, and the ring of
g-deformed symmetric functions @ (). The proofs given in this section will follow
those in [6].

Vertex operators are defined with the help of infinite-dimensional Heisenberg
algebras,

We shall define a g-analogue of a Heisenberg aigebra H as

Definition 1. The g-Heisenberg algebra 7 is generated by a and (,, n € Z/0, and
satisfies the following relations
[m]
[Cm’ Cn]q = TT-;]Qém-i-n,Oa [Cm?a]q =0 (17)
where ¢ is a paramcter.
As usual S(H7) is the symmetric algebra gencrated by (_,, n € N. (__ i

regarded as a multiplication operator and ¢, as an annihilation operator on S(M_ ).
As an example,

[n],

- %]
1 — tl%le

(nCon-1= neN

where a is considered as an identity operator.
Now we can define the g-analogue of a simplified form of vertex operators on the
space S(H7) as follows

1 — ¢nle P
V(z) = exp Z --—[—]—(_n:r:“ exp { — Z T
' azp1 e nzl 9 (18)
= Z V, oz~ "

(19)
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We define a Hermitian structure {,) in the space S{H])

[n],

{C_nslon) = T,

or, in general,

(C—/\’ C—p) = zg(t)ékgx

where A = (A, A;,...,A)) and g = (g, pty,. .., ;) @re partitions,
A polynomial function in {_,, can be defined as follows

exp (t[“]"[n (o z ) z;om(t);c 20)

Hence

R =3 (M) ¢y Con=Cnlon-Con @D

|A|=n

The normal ordering product is used when the annihilation operator has to be
moved to the right of the product [3], as shown here.

nzl [ l

_ 4
:V(a:)V(y)::exp{Zl L (_n(z™ +y)}

1 [n]..

( - }
xexpi—z L Cn(m-“+y"”)}

nzl

and

V@V = V@V { "y}

ty

where the subscript ¢ indicates that the factor {(z — y/z — ty)}, is a formal series
in y/x with the powers of t being g-numbers.

Using the g-analogue of Young raising operators we give a g-analogue of Jing’s
proposition (2.17) [6] as follows.

Theorem 1. For a partition A = (A;A,... ;) the element V_, -1 can be expressed
as

16

1= —L % RI(t

Voaod H.{hw,..} Q.
i<y 1)

where §;; is Young's raising operator whose action is defined as

6='J'R€ DI P9 )"R()\1 DA 1)

and the subscript q in { }, means the powers of ¢ are g-numbers.
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FProof. The action of the components of the vertex operators V(z) as defined in
(18) can be shown to be

1-— t[m]q
V.,.1l= % exp z —_——_ ™ X'"d—w
i), o] [m]q P

where the subscript ¢ is for the contour integral.
Then it is easy to see the trivial result

V_,. 1= Ri(t).

For the rest, let us use the contour integral approach. For any partition A = X,... A,

V_)"l'_./’ /V(a:l) V(;[:‘) lx_hd—ml_...ﬂ

Ty T
Y
1 L1 — ok x— & rdz
el A e I VIR e
i=1,m3>1 q 1giigt U 1/

where the term {z; — =, /=, — tz;} 4> comes from the normal ordering of the creation
and annihilation operators. Using the definition of R (t), we can write the following.

1 T, —x, dm
1= __Tj Z Rgl(t)H{—J} oAt —
(27i) S el tx; \ x

Expanding the formal series {z; — z;/z; — t2;}, for i = 1 we get

: 2
V_, (2 )z/ Z Rq(t)H(l-l"(t[l]‘?_ ) i+(t[2]°_t[1]q)%+"')

neN?

< I FimZ L camde
z; —tx; x
q

2gi<ygl
1 I
= 2ri)i-1 H (1 + (e = 1)6,; + (e — t[nlq)éfj +)
j=2
x]ZRil(t)Rz(t)
BT ~—§\+ﬁfl_5:f?_
x H {a:‘-—t:c-} z %
g

2gigigl 7

where A = Xy, Ay,... A, & = xy...7, dafe = da, /2, ...dz/z; and RL(t) =
R{ (t)R3 (1)... RS (t). The orthogonality of the g-analogue of vertex operators
can be described by the following theorem.
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Theorem 2. For two partitions A = (A, Ay, ..., A Y and g = (g, oy ooy 1ig)

(V_a1,V_, .1}, = b ()6, 22)
where
b (1) = [[ehoy @i =T] (1 _ tmq) )
i1 iz

and m, is the number of occurrences of 7 in A.

In order to prove this we will give g-analogues of some of Jing’s results [6].
Lemma 1. For m,n € N, we have
V2V o 1=6, (1),

—-n'-m

The proof of this lemma is straightforward using the properties of the components of
vertex operators.

Proposition 1. Let X = (1™1,2™z__ Jand A = (1™:~1,2™3__. ) then we have
V2 Vo, 1=6,,, (1 - t[mﬂq) V.5
The previous lemma and the inductive assumptions prove this proposition.

Now the orthogonality of the g-deformed vertex operators can be proved as
follows.
For two partitions A and g, such that [A] = |u| we have

(Voa1, Vo, 1), = V5.1,V V),
= (V516 ,, (1-d™®) v ),
= 6y, (1= UM (V_51,V 50,
By repeating this we get
(V_x-1,V_,.1), = bi(1)6,,

which is the desired resuit. 0

Cgmparing the inner product ({_,,(_,) = ={(#)6,,, and (8), we can define a
mapping from V, to A ®; Q,(¢) as follows.
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paﬁnition 2. The mapping p: V, — A®z Q (1) for a partition A = (1™:2™M2 ™)
is given by

P (C-A) =p (CTfCT;"'CTJI) = P‘{n'p’;”...p;"' = p,.

This immediately gives

1-§;
p(Voa-1)=p(Voy, Voy, Vo, 1) =]] {1__1“5”—} . (%
q

Comparing (24) and the identity
(QL(1), QL() = 83(2)8y,

we conclude that for a general value of ¢ the map p: V, — A ®; @,(t) takes the
form ' ‘

p (Vo) Voy, -V, (1).1) = Q4(1). (25)
The specializations ¢ = 0, -1 give the following results

P(V_\, Vo, Vo (-1).1 = Q3(-1) (26)
and

P(V_3, Vop,oe Vo, (0).1) = 6§ @7

where Q%(—1) are the g-deformed Schur Q functions and s} are the g-deformed S
functions,

5. Construction of untwisted g-vertex operators

In previous sections we have worked out the g-analogue of the vertex operators.

On the basis of (18) and (19) we define the untwisted g-vertex operators in normal
ordered form as follows,

— " — ¢lnl
U(z) = exp {Z “1‘“'[‘;;12(5_112“} exp {— Z l_h.;]_..cnz—n} 6 ZC@+1

nzl nzi
ST U (28)
nel "
=:U(z}:
and
Lt el ¢ 1+l
U*(z) = exp —Z——[—]——C_nz" exp ZT*L]_C"Z-“ et 2z~ Lo
l nzl LT ) ln}i A )
— E U* e (29)
neL "

=: U*(z):
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where 2z is a non-zero complex number and the action of Coy 15 defined as
Ciope” = (n,()e” 7,¢ € S(H;).

The factors e¢z~(¢@+1) and e¢z¢m+*! arise from the commutation of annihilation
operators as they are transferred to the right in accordance with normal ordering.
For t — 0 and g — 1 these expressions take a similar form to the vertex operators
used in dual resonance theory {4).

There is another way of developing the untwisted g-vertex operators. Consider
a finitely generated free Abelian group L and define a non-singular symmetric Z-
bilinear form {,) on L such that

(€, ¢)e2z2 for cel.
Define the function
C:LxL—-F
(C,m) = (=) tmn) = TT(—wm e

where w is the kth primitive root of unity and m € 2Z/kZ. Then the commutator
map C is bilinear into the Abelian group F such that

C(C-I—T;,@) = C(C,f’)c(mf’) (30)
C(¢n+0)=C((,n)C((, 8)

and
c(¢, () =1 G1)

for {,n,0 € L.
Let w, = (—1)*w. In view of equations (30) and (31) there is a unique central
extension

1 {we) = LSL — 1 (32)

of L by the cyclic group generated by w, with commutator map C such that

-1

Pl 11
appa "0

P

ora,be L.

<=l
e

o —
= C(a,

We fix e € L such that @ = ¢. This construction gives us the following form of the
g-vertex operators.

1 — ¢lnls

— ik
X(Z) = exp Z 'l'—"'i—"""C_nzn exp < — Z —-_an—“ azCwt!
s Il (33)
— Zatnzn

nel
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where the a € L. For a special case of
(o) = (1)
we get
aba~1p"! = (-1){@:h) for a,be L

and the untwisted g-vertex operators take the following form.

_— t["] — ¢lnla
X*(z)=exp {:tzl (7] ~¢ Con? }exD {:FZ : [ t] ,.Z'"}a“z*(tor“
nzl q q

nzl (34)
= Z Xf z".
neZ

For t = 0 this expression is similar to the one given by Frenkel and Jing [2] in
the description of quantum affine algebras, except that they have used a different
definition of g-number. Equation (34) is the most general expression for the vertex
operators of untwisted type. With the varicus specializations of ¢ and ¢ one can derive
all the vertex operators discussed earlier.

6. Construction of twisted g-vertex operators

Twisted vertex operators are now obtained by the action of an automorphism of a
certain group M defined below. Closely following the terminology and notation used
in [8] and using the results of the previous section, we define the following.

(i) M is a finitely generated free Abelian group.

(i) (,} is a non-singular symmetric Z-bilinear form on M such that

{¢,(Ye2Z for { € M.

(iii) o is an automorphism of M such that

{oC,on) ={{,n) for {,ne M.

(iv) m is a positive integer such that o™ = 1.

")
< > oPc,c>e22 for ¢ € M.
pEZ[fmZ

Considering the action of the automorphism ¢ we redefine the commutator map
C as follows.

C:MxM=F

¢, mr— (—1)(21’&2/'»2"p("’)w<2p62/m2 po¥ () H (—w”)"”’c‘”) .
PEZ[m2Z
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Along with equations (30) and (31) we include the following

C(el,on)=C({,n) for {,neM (35)
and

Clm)=C(m )™t for (,ne M. (36)
Then the central extension of M by the cyclic group generated by w, with the
commutator map C is

1—4(w0)—+ﬂyilhf-#l (G7)
such that

ba~'b"! = C(a,b) for a,be M.

The automorphism o can be extended to an automorphism & of the extension M of
M such that

(fa)” = oa Vae M
and

Ga = aw™ Srezsmz 980)-(oP2.a)/2
Now the twisted g-vertex operators can be defined as

X(z) = £_(C,2)6,(C, 2)az™ Trez/mz o 200748} /2 (38)
where

1-— t["}q
&y = exp Z “TTTC_,LZH .
+n21 9

Again for the special case of
(wo) = (1)
we get
aba~1b1 = (=1)(&b for a,be M
and the twisted g-vertex operators take the form
XE(z) = £2(C,2)EE(C, 2)at 2 Trezimz 0" 3O (0732) 2

= E"Yizn (39)
ngl
where
1-— t["lq
= exp :!:Z —(_ "
nzl
and

1 - t["]u
=exp{ F T L
n2l

For the specialization ¢t = 0 equation (39) gives a similar result to the one reported
in [7] except that the definition of g-number is different. Also for ¢ =1 and ¢t = 0
this result is similar to the case studied by Lepowsky [8]. We find that the expression
(39) is a very general form of vertex operators. Various specializations of ¢, ¢ and o
give the desired results. For example, in the case of identity automorphism ¢ = 1
we get the uniwisted g-vertex operators and equation (39) reduces to (34).
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7. Conclusion

A g-analogue of the Heisenberg algebra is defined. This leads to the construction of
g-vertex operators with a parameter { similar to the theory of symmetric functions. An
ssomorphism from the space of g-vertex operators to the ring A% of the g-deformed
vertex operators is defined explicitly. This isomorphism is valid for a general value of
t and as well as the specialized values such that ¢t = 0 and ¢t = —1 in which case we
get S functions and Schur @ functions. Using these results a very simple technique
for the construction of twisted and untwisted g-vertex operators is developed. This
approach is more simple and straightforward than any other technique. The final
result is a very general form of the vertex operators and by the specializations of
various parameters, the results can be verified.
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